Honors Chemistry Review Atomic Structure (atomic structure secondary)

0

1. $(\#2-3)X(g) + \text{energy} => X^{+}_{(g)} + e^{-}$

(a.) Io

Ionization energy

b. Lattice energy

c. Hydration energy

d. Bond energy

e. Electron affinity

2.

(#2-2) Above is a model of a Lewis Dot structrure of an atom All of the following can be inferred from the dot diagram above EXCEPT:

- a. X is a group 16 element
- d. X can accept two electrons to become an ion with charge of 2-
- b. X has two half filled p-orbitals
- e. X has at least four electrons with in the "p" orbital

(#2-2) Which of the following sets of quantum numbers (n, l, l_m, l_s) best describes the valence electron of highest energy in a ground-state gallium atom (atomic number 31)?

n = energy level

1 = type of orbital (s= 0, p = 1, d = 2, f = 3)

$$l_m = s = 0$$
 $p = +1,0,-1$ $d = -1,-2,-3,0,+1,+2,+3$

$$l_s = +1/2 \text{ or } -1/2$$

a. 4,0,0, 1/2

d. 4,1,2,1/2

b. 4,0, 1,1/2

e. 4,2,0,1/2

- (c) 4,1,1,1/2
- 4. (#2-3) Which of the elements above has the smallest ionic radius for its most commonly found ion?
 - a. O

(d.) Mg

b. La

e. N

Ne, due to less number of protons, less coulombic attraction

d	11.	Match the number that correctly describe what is happening at each location.							
		a.	1. Lower level	2. energy added		3. light produced	4. gro	ound state	
		b.	energy added	light produced		excited state	gro	ound state	
		c.	excited state	ground state		energy added	gre	ound state	:
6	((d)	energy added	ground state		light produced	ex	cited state	
$\overline{\mathcal{A}}$	12.	(#2	-2) How many total orbi	tals are there with	a prii			. \ a(1
	í	a. (b.	1		c. d.	9 45	· 4p	4d 7t	
0	13.	<u>~~</u>	-1) Which of these woul	d be an acceptable	e form		•		_ ' _
_		a.	C ₅ H ₁₀ C ₅ H ₁₂		c. d.	C_5H_8 $C_{10}H_{16}$	1-	C=C-0	
d	14.	b. (#1) Of the options below, 1	l is not an isomer			ich is no	t an isomer.	
	1	a.	pentane		<u>c.</u>	2-methyl butane		1 1 1	
		b.	2,2 dimethyl propane		(d.	2-pentene	•		

Matching

15.	a. b. c. d. e. f. g. h. (#2-	isotope anion cation chemical physical mass number average atomic mass alkaline earth -1) An is two atoms which have the	i. j. k. l. m. o. p.	alkali metals principal proton noble gases spin magnetic Hunds Isomer number of protons and di	ifferent nu	mber of	f neutrons.
	(#2	-1) An is two atoms which have the -3) The first family on the periodic table is calle -2) The quantum number represents	d the	<u> </u>	ifferent nu	nber of	neutrons.

маш	e			i			. 1		7.7
	18. 19. 20. 21. 22. 23. 24. 25.	(#2-1) A	who has gain is the m who has gain ution (new sub- tively charge pa	ame suborbital had ubatomic particle a family of elem sum of the protomed an electron in stance) is an indicarticle is called a same type and controls and controls are type and controls are same are sa	with a positive ents that are verns and the neutrorder to fill its eator of a(an)	y unreactive. ons. outer orbital is a	an <u>OMI</u> SV _ change.		
Shor	t Ans 26.	Modeling atom		e for Rb, Al, N, and	1 He. Rb	· Al	10	· He:	
				following: Li, Li ⁺¹	L	:i: (4	33) Li	(+3)	5-2
	As	: 15 ² 25 ⁸ 2 - Write the sho	p 3s 3p ort hand configur	configuration notate 445 ² 34 ⁴ ation notation for the configuration for coxygen.	oarium.	1		3 + (St)	#10)
	27.	Sy	Atomic #	P+-	1 ₀ n	Mass #	e-	Charge]
		Bi	83	83	120	203	83	none	
		²⁵⁴ 99Es ²⁺	99	99	155	254	97	+2	
		I	1				<u> </u>		

Atomic structure (#2-1)

28. Laboratory structure of the atom #2-4

In lab we burned several different metals. As a result, several different colors were produced. Explain, in great detail, how these colors were produced and indicate a few areas in your everyday life that you see this effect occurring.

excited excited ground

29. (#2-1) The most abundant isotopes of hydrogen and oxygen are H-1, H-2, O-16, O-17, respectively. Using these isotopes only, what is the number of different possible values for the molecular mass of water and list them?

30. (#2-3)

Both of the peaks represent electrons removed from the same energy level but from different atoms. Which of the following assumptions are true or false? Give a reason why you chose your answer.

a. (TAF) Element "A" has more electrons removed from the 2p orbital...

we do not knowlis

b. (TF) Element "B" has a larger nucleus then A...

c. (TF) Electrons from "A" are in the same energy level and orbital but they are closer.

31. (#1)(#1) Hydrocarbons are used to make oils and fats used in foods. A saturated fat has only single bonds and a maximum number of hydrogens. Where as an unsaturated fat contains double bonds and therefore loses some of the hydrogen. Scientists add hydrogne back, with the help of a catalyst, on to the hydrocarbon to convert an unsaturated fat back into a saturated fat.

Draw a 4 carbon hydrocarbon as both a saturated and unsaturated hydrocarbon. Please include the formula for both as well.

32. (#1) (#1) Propane is a common fuel to be used in home heating. If oxygen is restricted the propane will burn via incomplete combustion. Write out the balanced incomplete combustion of propane.